MATH3210 - SPRING 2024 - SECTION 004

HOMEWORK 6-SOLUTIONS

Let f be real-valued function whose domain is a subset of the real numbers. We say that f is L-Lipschitz if for every pair of points x, y in the domain of $f,|f(x)-f(y)| \leq L|x-y|$.
Problem 1 (80 points). Prove or find a counterexample for each:
(a) If f is uniformly continuous, then f is L-Lipschitz for some $L>0$
(b) If f is L-Lipschitz for some $L>0$, then f is uniformly continuous
(c) If f and g are L-Lipschitz, then there exists an L^{\prime} such that $f+g$ is L^{\prime}-Lipschitz
(d) If f is L-Lipschitz, then there exists some L^{\prime} such that $g(x):=f(x)^{2}$ is L^{\prime}-Lipschitz

Solution.

(a) This is false. The function $f(x)=\sqrt{x}$ on $[0,1]$ must be uniformly continuous, since it is continuous on a compact interval. However it is not L-Lipschitz for any L. Indeed, fix $L>0$. Then if $x=0$ and $y=1 /(2 L)^{2}$,

$$
|f(x)-f(y)|=\left|0-\sqrt{1 /(2 L)^{2}}\right|=1 /(2 L)=2 L\left|0-1 /(2 L)^{2}\right|>L|x-y|
$$

Hence, \sqrt{x} is not L-Lipschitz.
(b) This is true. Let f be L-Lipschitz, and fix $\varepsilon>0$. Set $\delta=\varepsilon / L$. Then if $|x-y|<\delta$,

$$
|f(x)-f(y)| \leq L|x-y|<L \cdot \varepsilon / L=\varepsilon
$$

Hence f is uniformly continuous.
(c) This is true. We claim that if f and g are L-Lipschitz then $f+g$ is $2 L$-Lipschitz. Fix x and y in the domain of f and g. Then

$$
\begin{aligned}
|(f+g)(x)-(f+g)(y)|= & |f(x)-f(y)+g(x)-g(y)| \\
& \leq|f(x)-f(y)|+|g(x)-g(y)| \leq L|x-y|+L|x-y|=2 L|x-y|
\end{aligned}
$$

(d) This is false. Consider $f(x)=x$ defined on \mathbb{R}. Then f is 1-Lipschitz since $|f(x)-f(y)|=$ $1 \cdot|x-y|$. But $g(x)=x^{2}$ is not L-Lipschitz for any L, since if $x=L$ and $y=L+1$, then

$$
|f(x)-f(y)|=\left|(L+1)^{2}-L^{2}\right|=2 L+1>L \cdot 1=L|x-y|
$$

Problem 2 (20 points). Show that if $f:[a, b] \rightarrow[c, d]$ is continuous and has an inverse, then either f is increasing or f is decreasing.

Solution. Assume that f is continuous and has an inverse. Then there exists a unique $x \in[a, b]$ such that $f(x)=c$. We claim that either $x=a$ or $x=b$. Indeed, assume for a contradiction that $a<x<b$. Then $f(a)$ and $f(b)$ are both greater than c, since only one element of $[a, b]$ can map to c. Choose some z such that $c<z<\min \{f(a), f(b)\}$. By the intermediate value theorem, there exists $y_{1} \in(a, x)$ such that $f\left(y_{1}\right)=z$ and $y_{2} \in(x, b)$ such that $f\left(y_{2}\right)=z$. Thus, f is not invertible, so either $f(a)=c$ or $f(b)=c$.

In the case that $f(a)=c$, we claim that f is increasing. We again proceed by contradiciton. Assume there exists $a \leq x<y$ such that $f(x)>f(y)$. Choose some z such that $f(y)<z<f(x)$. Then since $f(a)=c \leq f(x)$, by the intermediate value theorem applied ot f on $[a, x]$, there exists
$y_{1} \in(a, x)$ such that $f\left(y_{1}\right)=z$. Similarly, there exists $y_{2} \in(x, y)$ such that $f\left(y_{2}\right)=z$. This is a contradiction to the invertibility of f.

A parallel argument works when $f(a)=d$, in which case we conclude that f is decreasing.

